Abstract

In this study, the behavior of three different discs consisting of AS4 carbon fiber, T-300 carbon, and Al2O3ZrO2 (nanocomposite) materials at constant temperature was investigated by the numerical analysis method. Nanocomposites are formed by the dispersion of nanometer-sized particles in a matrix. With the advantages that nanocomposites bring to the material, they increase heat resistance in general. Carbon fibers, on the other hand, are preferred in the aerospace industry and aircraft industry due to their high strength properties. In this study, it was assumed that the modulus of elasticity does not change with temperature. The temperatures applied to the discs are 45 ℃, 60 ℃, 75 ℃, 90 ℃, and 105 ℃, respectively. It has been observed that the radial and tangential stress values obtained at high temperatures are higher than at low temperatures. The Al2O3ZrO2 nanocomposite materials have found that the stresses occurring in the Al2O3ZrO2 (nanocomposite) disc are higher than the stresses occurring in the AS4 carbon fiber disc. The stresses obtained on the AS4 carbon fiber disc are T-300 carbon discs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call