Abstract

Assuming that the contemporary tectonic activity in China can be treated as continuous, we have simulated 1 245 present-day multiple-epoch GPS velocity solutions in the range of Chinese mainland, Mongolia, Myanma, India, Nepal and Himalayas with a bi-cubic spline interpolation function to inverse the integral horizontal velocity with the fitting accuracy less than 3 mm and obtained the strain rate fields in Chinese mainland. We have also analyzed the characteristics of spatial distribution of horizontal deformation and strain rate fields in Chinese mainland. The result shows that the analysis on the continuous deformation in the large-scale and dense GPS velocity fields can reveal not only the integral tectonic characters of Chinese mainland but also the tectonic characters in local regions. Generally, the magnitude and intensity of horizontal tectonic deformation have a mutation in the South-North Seismic Belt (95°E–102°E), which is stronger in the west than the east and stronger in the south than the north. Large strain rates are found in the areas as Kunlun block, Xianshuihe fault zone and central Yunnan, and the variation of velocity is very rapid. At the same time, the tectonic activity is relatively calm on Altyn Tagh fault zone, and extensive strain is found in the eastern part of central Tianshan.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call