Abstract

In this study, the dynamics of a contact line passing a single defect, which was represented by a locally wettable part (whose static contact angle is less than the other part, namely, chemically heterogeneous and physically flat part), was analyzed using numerical simulations employing the front-tracking method and the generalized Navier boundary condition. We observed that the contact line was distorted with a logarithmic shape far from the defect; however, the distortion was dependent on the wall velocity. The apparent (averaged) dynamic contact angle of the wall with a defect was evaluated using a macroscopic energy balance. The apparent dynamic contact angles estimated from the energy balance agree well with the arithmetic averaged angles obtained from the present simulations. The macroscopic energy balance is useful to consider the effect of heterogeneity or roughness of the wall on the relation between the dynamic contact angle and contact line speed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.