Abstract

A finite element algorithm to simulate two dimensional flows of viscous and inviscid compressible fluids for a wide range of Mach numbers is presented in this work. This model is coupled to immersed deformable structures through equilibrium and compatibility conditions in order to analyze its dynamic behavior. For the fluid, time integration is performed by a two-step Taylor-Galerkin explicit scheme and Newmark’s method is used to obtain the dynamic response of the structure. An arbitrary mixed Euler-Lagrange description is used to re-define a new finite element mesh in the presence of the immersed structure displacements. Finally, several examples are included showing the model behavior and possibilities for future expansions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.