Abstract

In this paper, a circular core shaped photonic crystal fiber (PCF) is proposed and the optical propagation characteristics are investigated and simulated by applying the finite element method (FEM) with the help of COMSOL Multiphysics software. The cladding of this PCF is composed of fused silica including a large center air-hole. The simulation process is performed within 1000–2000 nm wavelength. The raised PCF supports up to 38 OAM modes with larger bandwidth (1000 nm) as well as flat dispersion variations. The refractive index difference can exceed $$ 10^{ - 4}$$ for each OAM mode. The confinement loss of this PCF remains low approximately around $$10^{ - 9}$$ to $$10^{ - 8}$$ dB/m, comparatively better the nonlinearity, the numerical aperture, and the dispersion variation evolves into smoother. So, all these optimizing optical properties prove that our designed PCF is a promising candidate for the OAM mode transmission and other relevant optical communications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.