Abstract
This paper presents a numerical analysis of the effect of different parameters (rotation speed, equilibrium constant and Schmidt numbers) on the diffusion (ZD) and electro-hydrodynamic (ZEHD) impedances of chemical-electrochemical (CE) systems in a rotating disk electrode (RDE) configuration. For this purpose, we used a finite difference algorithm to discretize and solve the governing equations. Our results show that the separation between convection-diffusion and reaction impedance loops depends on the ratio between diffusion layer thickness () and reaction layer thickness (). Also, we have demonstrated that the characteristic frequency of the reaction impedance loop is a function of As for ZEHD data, we found that, for slow kinetics, the plots do not overlap for different rotation speeds. Further, the upper limit of the negative phase is different for both, slow and fast kinetics, from the usual 180° value found for single charge transfer systems. The increment of the equilibrium constant, obtained via increasing the reaction rate constant of the electroactive species, caused the magnitude ZD to decrease and that of ZEHD to increase. Lastly, we found that changing ScA mainly affects the concentration gradient at the surface while the effect of ScB will depend on the kinetic regime.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.