Abstract
A comprehensive study to understand important parameters that affects the Cavity Linear Receiver (CLR) performance has been done. In this paper, the combined optical and thermal analysis has been successfully utilized, to investigate the thermal-hydraulic behavior of CLR of cross-linear CSP (CL-CSP) system, which is developed at the Tokyo Institute of Technology proposed a new CSP technology, which is called Cross Linear Concentrating Solar Power (CL-CSP). The first demonstration plant of cross-linear concept has been installed at Rajiv Gandhi Proudyogiki Vishwavidyalaya, Bhopal (23.2599° N, 77.4126° E), the combined analysis was done using a numerical model, which has been validated with literature and experimental test. The numerical model simulates the thermal-hydraulic behavior of CLR with the variation of working condition, surface property, and geometry. The optical efficiency and thermal efficiency are the main performance parameters for the simulation.From the numerical study, distribution of both solar flux and temperature on the receiver tubes shows high non-uniformity in axial and radial direction. Furthermore, the parameters effect on the CLR performance is investigated under general working condition of receiver of 673 K temperature, 0.0925 kg/s mass flow rate, and during solar noon of summer solstice.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.