Abstract

Unsteady cavitating turbulent flows around a conventional marine propeller in a non-uniform wake were analyzed to predict the excited pressure fluctuations. The numerical simulations of the propeller cavitation were based on the Navier–Stokes equations solved with a mass transfer cavitation model, the k–ω SST turbulence model and a sliding mesh. The evolution of the unsteady cavitation and the pressure fluctuations around the propeller in the non-uniform flow are predicted fairly well compared to experimental results. The CFD results verify the connection between the pressure fluctuations and the changing cavitation patterns as the blades sweep through the high velocity wake region. Furthermore, to better demonstrate the physical mechanism of the cavity-generated pressure field, the cavity volume was calculated and analyzed to illustrate the relationship between the cavity evolution and the pressure fluctuations. The analysis shows that the acceleration due to the cavity volume changes is the main source of the pressure fluctuations excited by the propeller cavitation. These results demonstrate that this numerical methodology is suitable for simulating unsteady cavitating flows around a propeller.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.