Abstract
In the present exploration, our objective is to investigate the importance of Hall current coatings in the establishment of Cattaneo–Christov (CC) heat flux model in an unsteady aqueous-based nanofluid flow comprising single (SWCNTs) and multi-walled (MWCNTs) carbon nanotubes (CNTs) amid two parallel rotating stretchable disks. The novelty of the presented model is strengthened with the presence of homogeneous-heterogeneous (HH) reactions and thermal stratification effects. The numerical solution of the system of coupled differential equations with high nonlinearity is obtained by applying the bvp4c function of MATLAB software. To corroborate the authenticity of the present envisioned mathematical model, a comparison table is added to this study in limiting case. An excellent harmony between the two results is obtained. Effects of numerous parameters on involved distributions are displayed graphically and are argued logically in the light of physical laws. Numerical values of coefficient of drag force and Nusselt number are also tabulated for different parameters. It is observed that tangential velocity (function of rotation parameter) is increasing for both CNTs. Further, the incremental values of thermal stratification parameter cause the decrease in fluid temperature parameter.
Highlights
Nanofluids consist of solid particles called nanoparticles with higher thermal characteristics suspended in some base fluid
Results plotted both for MWCNTs and MWCNTs
Reynolds number as in Results have are plotted for MWCNTs and MWCNTs
Summary
Nanofluids consist of solid particles called nanoparticles with higher thermal characteristics suspended in some base fluid. Nanofluids are considered as the finest coolants for its various industrial applications. Nanofluids exhibit promising thermos-physical properties e.g., they have small viscosity and density and large thermal conductivity and specific heat [2]. Choi and Eastman [4] primarily examined the upsurge in thermal conductivity by submerging nanoparticles into the ordinary fluid. Because of these thermos-physical characteristics, nanofluids are considered as the finest coolants that can work at various temperature ranges [5]. The water-based nanofluid flow with numerous magnetite nanoparticles amid two stretchable rotating disks is numerically studied by Haq et al [7]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.