Abstract
Ammonia is a promising carbon–neutral fuel, able to power heavy-duty vehicles, non-road machineries and ocean ships with zero CO2 emission. However, practical challenges still exist when applying ammonia in traditional internal combustion engines (ICEs) due to its high ignition energy, slow flame propagation and significant NOx emissions. Free piston engine (FPE) is a flexible alternative to ICE whose piston can move freely without the constraints of crankshaft. Therefore, its piston trajectory can be leveraged as a new control means to facilitate ammonia combustion. In this paper, a numerical analysis investigating ammonia HCCI combustion in FPE was presented. A physical-based model was developed at first, including a unique trajectory synthesizing mechanism and a detailed reaction mechanism of ammonia oxidation. Various asymmetric piston trajectories were then employed into the model and the simulated HCCI combustion were analyzed through six characteristics, namely indicated thermal efficiency, location of peak pressure, exhaust gas temperature, combustion duration, ignition delay, and NOx emissions. This investigation not only determines the best compression ratio (CR = 25) for ammonia ignition, but also shape the optimal piston trajectory (symmetric trajectory with Ω = 0.5) for ammonia HCCI combustion to enhance thermal efficiency and reduce NOx emission simultaneously.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.