Abstract
The computational fluid dynamics method, which provides an estimation of the pressure drop in the airway before and after the stent implantation, is proposed in this study. This method is based on the finite volume model. The pressure field was solved by the Navier-Stokes equations. The proposed methodology was evaluated in seven health people (control group) and in fourteen patients who were assigned in two groups, in which one was tracheal stenosis and the other was bronchial stenosis. The results showed that the pressure drop after tracheal stent implantation became significantly smaller. For bronchial stent implantation cases, the airway resistance improved insignificantly.
Highlights
Airway tumors related to central airway compression produces dyspnea, stridor, hemorrhage, obstructive pneumonia, or combinative syndromes
We analyzed the changes of the cross-sectional area of the inlet and outlet and pressure drop in the airway for these 7 subjects (Table 2)
In Computational Fluid Dynamics (CFD) simulations, we found that the pressure drops were 6.46 and 1.44 Pa before and after the stent placement, respectively
Summary
Airway tumors related to central airway compression produces dyspnea, stridor, hemorrhage, obstructive pneumonia, or combinative syndromes. These patients branded with a poor prognosis may not benefit from surgery with a curative intent; they will require procedures for palliation with the hopes of being provided with an improved quality of life. The purpose of this study was to set up and evaluate a novel model which is capable of investigating the real airflow dynamic change in central airway obstruction after airway stent implant via combination of CFD technology and 3D computer tomography to mimic numerical simulation of airflow alteration
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.