Abstract
Solid armatures in electromagnetic rail launchers have to undergo severe electromagnetic, mechanical, and thermal stresses. These stresses are unevenly distributed in the armature mainly due to the velocity skin effect. Contrasting this effect reduces the peak to average ratio of the stresses and allows better performance of the device. In this article, the behavior of a transposed multiconductor solid armature is numerically investigated by the research code electric network for electromagnetics (EN4EM) developed at the Department of Energy, System, Territory and Construction Engineering (DESTEC), University of Pisa, Pisa, Italy. The code is based on an integral formulation that reduces the magnetic diffusion problem in the analysis of a time-varying electric network. The code enables a strong electromechanical coupling and allows accounting for currents’ distribution in the rails and in the armature due to the proximity and “ordinary” skin effects, as well as the velocity skin effect. Preliminary computations have shown an improved (more regular) current density distribution in the armature. This allows increasing the total current on the armature without reaching the melting temperature in the armature. Improved performance of the launcher with transposed armature is predicted.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.