Abstract

In this work, we study, from the numerical point of view, a heat conduction model which is described by the history dependent version of the Moore–Gibson–Thompson equation. First, we consider the thermal problem, introducing a fully discrete approximation by means of the finite element method and the implicit Euler scheme. The discrete stability of its solution is proved, and an a priori error analysis is provided, which leads to the linear convergence imposing suitable regularity conditions. Secondly, we deal with the natural extension to the thermoelastic case. Following the analysis of the thermal problem, similar results are shown. Finally, we present some one-dimensional numerical simulations for both problems which demonstrate the accuracy of the approximations and the behavior of the discrete energy and its solution.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.