Abstract

AbstractIn this article, we consider a system of two coupled nonlinear diffusion–reaction partial differential equations (PDEs) which model the growth of biofilm and consumption of the nutrient. At the scale of interest the biofilm density is subject to a pointwise constraint, thus the biofilm PDE is framed as a parabolic variational inequality. We derive rigorous error estimates for a finite element approximation to the coupled nonlinear system and confirm experimentally that the numerical approximation converges at the predicted rate. We also show simulations in which we track the free boundary in the domains which resemble the pore scale geometry and in which we test the different modeling assumptions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.