Abstract

When solving 2D linear elastodynamic equations in homogeneous isotropic media, a Helmholtz decomposition of the displacement field decouples the equations into two scalar wave equations that only interact at the boundary. It is then natural to look for numerical schemes that independently solve the scalar equations and couple the solutions at the boundary. The case of rigid boundary condition was treated by Burel [Ph.D. thesis, Universite Paris Sud-Paris XI (2014)] and Burel et al. [Numer. Anal. Appl. 5 (2012), pp. 136— 143]. However the case of traction free boundary condition was proven by Martinez et al. [J. Sci. Comput. 77 (2018), pp. 1832-1873] to be unstable if a straightforward approach is used. Then an adequate functional framework as well as a time domain mixed formulation to circumvent these issues was presented. In this work we first review the formulation presented by Martinez et al. [J. Sci. Comput. 77 (2018), pp. 1832-1873] and propose a subsequent discretised formulation. We provide the complete stability analysis of the corresponding numerical scheme. Numerical results that illustrate the theory are also shown.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.