Abstract
The numerical manifold method is a cover-based method using mathematical covers that are independent of the physical domain. As the unknowns are defined on individual physical covers, the numerical manifold method is very suitable for modeling discontinuities. This paper focuses on modeling complex crack propagation problems containing multiple or branched cracks. The displacement discontinuity across crack surface is modeled by independent cover functions over different physical covers, while additional functions, extracted from the asymptotic near tip field, are incorporated into cover functions of singular physical covers to reflect the stress singularity around the crack tips. In evaluating the element matrices, Gaussian quadrature is used over the sub-triangles of the element, replacing the simplex integration over the whole element. First, the method is validated by evaluating the fracture parameters in two examples involving stationary cracks. The results show good agreement with the reference solutions available. Next, three crack propagation problems involving multiple and branched cracks are simulated. It is found that when the crack growth increment is taken to be 0.5 h≤ da≤0.75 h, the crack growth paths converge consistently and are satisfactory.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.