Abstract
AbstractA numerical procedure is presented for the simulation of 1‐D compression wave propagation in saturated poroelastic media. The media are modelled as a two‐phase system consisting of compressible fluid and solids. Viscous coupling forces resulting from the relative motion between phases are characterized as Darcy type. The numerical procedure can account for effects of axial strain, nonlinear material behaviour, and various drained and undrained boundary conditions. Time integration is carried out explicitly and isothermal conditions are assumed. The method is capable of modelling shock wave fronts without introducing artificial viscosity. Numerical results are in close agreement with analytical solutions for several simplified cases and indicate that mass coupling may have important effects on fluid velocity and wave speed. Corresponding effects on solid velocity and wave speed are much smaller. Numerical results also indicate that damping occurs in a saturated poroelastic column and is dependent on the value of hydraulic conductivity. Copyright © 2007 John Wiley & Sons, Ltd.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal for Numerical and Analytical Methods in Geomechanics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.