Abstract

The mechanical behavior of carbonaceous mudstone deteriorates greatly when exposed to wet environments, and the precise evaluation of its slope stability has been a difficulty. This study aims to establish a numerical analysis method for the instability problems of its slopes; this method considers the effects of weathering and water-softening by establishing their mathematical expressions. The weathering and water-softening effects are reflected by variations in the mechanical properties (e.g., elastic modulus, angle of internal friction, and cohesion) of carbonaceous mudstone, with the depth following a logistic function and the shear strength parameters varying with wetting duration and degree of saturation. Their weathering and water-softening effects are reproduced with the use of the ABAQUS finite-element software and MATLAB programming. The proposed numerical method is applied to analyze the seepage field and stability of a highway cut slope with and without protection structures; the application results show that the proposed numerical method is reliable in analyzing the slope's instability problem. The use of the herringbone skeleton structures can reduce the water-softening effects and thus increase the safety factor of the slope. The findings of this study could provide guidance to the design and construction of highway cut slopes in mountain areas that are rich in carbonaceous mudstone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call