Abstract
In this paper, the characteristics of blood cell motion are analysed by solving a coupled electromagnetic, fluid and particle dynamics problem. The forces acting on blood cells are obtained from magnetic field and fluid field distributions, both of which are numerically calculated by the finite element method. These force consist of the magnetophoretic force, drag force, buoyancy and gravity, these are driving terms in Newton's equation for the particle motion. We propose a numerical analysis procedure to solve the coupled problem, and a micro cell separation device without a micro fabricated structure is designed. The dynamic characteristics of the cell motion are simulated. The simulation results show the proposed numerical scheme to analyse the micro particle dynamics and also show the usefulness of the designed device.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.