Abstract

In this paper, a numerical scheme for a generalized planar Ginzburg-Landau energy in a circular geometry is studied. A spectral-Galerkin method is utilized, and a stability analysis and an error estimate for the scheme are presented. It is shown that the scheme is unconditionally stable. We present numerical simulation results that have been obtained by using the scheme with various sets of boundary data, including those the form u(θ) = exp(idθ), where the integer d denotes the topological degree of the solution. These numerical results are in good agreement with the experimental and analytical results. Results include the computation of bifurcations from pure bend or splay patterns to spiral patterns for d = 1, and computations of metastable or unstable higher-energy solutions as well as the lowest energy ground state solutions for values of d ranging from two to five.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.