Abstract
In this paper, a three dimensional (3D) numerical model of a rectangular microchannel with longitudinal vortex generators (LVGs) is developed. The impacts of length, width, longitudinal spacing, and number of LVG pairs are discussed. To improve the flow and heat-transfer performance, the Taguchi method is employed for optimization. Three evaluation indexes—Nusselt number (Nu), Fanning friction factor (f), and overall efficiency (η)—are selected. The analysis of the influence degree of the geometric parameters of LVGs are carried out by intuitive analysis of the Taguchi method results, and the optimum combinations of geometric parameters are also determined. Also, the second-order dimensionless correlations involving multiple impact factors are obtained through response surface analysis. Results show that the number and longitudinal spacing of LVG pairs are the main impact factors for Nu. Regarding the flow resistance, the number and length of LVGs have a much stronger influence than other parameters. Two optimum combinations for Nu and overall efficiency are acquired, which achieve a 23.6% and 7.2% increase for Nu and overall efficiency, respectively, compared with the original model. The maximum differences between the correlations and test models are less than 15% for all of the evaluation indexes. The present investigation can be beneficial for the design and optimization of LVGs-enhanced microchannel heat sinks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.