Abstract

This study aims to present a parametric analysis of combined use of two surge protection devices in a relatively very long up-pumping water supply pipeline. Transient conditions are induced by sudden pump tripping. The effects of four parameters of hydropneumatic tank, i.e., polytropic exponent, initial air volume, orifice diameter and wave celerity and two parameters of surge tank, i.e., tank volume and tank orifice diameter are investigated on pressure surges. The parameters are optimized to achieve reduced pressure fluctuations throughout the pipe length. A numerical model is developed to perform hydraulic transient analysis in the pipeline system. Governing partial differential equations for unsteady flows are solved by the method of characteristics (MOC) and are subsequently converted into algebraic form using finite difference method. To establish the authenticity of the model, it is experimentally validated by comparing the model results with the experimental results. The validated model is then employed to analyze the effects of various parameters of the two surge protection devices on pressure fluctuations along the pipe length. The results obtained from the study are optimized for safe operation and economic use of the system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.