Abstract

Thermochemical energy storage is one of the process which is capable of both short term and long term energy storage. Incorporating this storage method with solar energy is important when we considering seasonal or long term thermal energy storage. Thermochemical energy storage uses chemical reactions to store and release the energy. The charging or storage temperature of the thermochemical material (TCM), porosity of the reactor bed, concentration of reactants etc. are some of the important factors which affects the storage and release of the energy of a TCM. In this work we investigate the energy release from MgSO4 by modelling the hydration reaction of MgSO4 in a packed bed reactor with continuous flow of moist air through the bed. It is observed that the parameters such as porosity of the reactor bed, mass flow rate of moist air, particle diameter, concentration of water vapour etc. play an important role on the energy release from the TCM. Thaguchi method is used to optimize these parameters. The porosity of the reactor bed and the particle size of the TCM are found to be crucial in energy release.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.