Abstract

Deformable solid projectiles undergo projectile mushrooming during impact and thus are different from rigid and soft hollow projectiles; however, limited work has been conducted on the impact of deformable solid projectiles on concrete targets. In this study, an explicit dynamic finite element procedure is employed to study nine existing experimental tests on the normal impact of a deformable solid (lead) projectile into a plain concrete (PC) slab. To correctly model the impact, both non-linear material response and progressive finite element erosion have been taken into account for the deformable solid projectile and the PC slab. The numerical results are compared with experimental results in terms of different modes of local damage to the PC slab and the maximum penetration depth of the PC slab. The mechanism of the front cratering, the scabbing, and the perforation of concrete target under the impact of deformable solid projectile and the effect of projectile rigidity on the local damage to the PC slab are investigated. A dose-response relation is used to describe the variation of the maximum penetration depth with the impact velocity. Some model parameters that most affect the simulation results are also highlighted.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call