Abstract

Physical parameters of a spectral beam combining (SBC) system for multiple Yb-doped fiber lasers (YDFLs) were identified and numerically analyzed to obtain the optimal beam quality and the combining efficiency. We proposed an optimal range of the parameters that can be utilized in SBC systems. For a practical SBC system composed of a multi-layer dielectric grating and a transform mirror, we systematically varied input laser parameters such as the incident angle, beam diameter, laser linewidth, spectral spacing, number of beams, and their spatial separation. Characteristics of diffracted beams by the SBC system were numerically analyzed using a Fourier modal method (FMM). The beam quality M2 and the combining efficiency, η, were optimized by varying the laser beam parameters. We found that M2 and η were most affected by the angle of incidence and the laser linewidth, respectively. We presented the optimal parameters for three, five, and seven linear beam array SBCs along with a range of allowed parameters that could be used in the laser power scaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.