Abstract

The affine Grassmannian is a noncompact smooth manifold that parameterizes all affine subspaces of a fixed dimension. It is a natural generalization of Euclidean space, points being zero-dimensional affine subspaces. We will realize the affine Grassmannian as a matrix manifold and extend Riemannian optimization algorithms including steepest descent, Newton method, and conjugate gradient, to real-valued functions on the affine Grassmannian. Like their counterparts for the Grassmannian, they rely only on standard numerical linear algebra and are readily computable.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.