Abstract

A numerical algorithm for calculating the generalized Mittag-Leffler $\mathrm{E}_{\alpha,\beta}(z)$ function for arbitrary complex argument $z$ and real parameters $\alpha>0$ and $\beta\in\mathbb{R}$ is presented. The algorithm uses the Taylor series, the exponentially improved asymptotic series, and integral representations to obtain optimal stability and accuracy of the algorithm. Special care is applied to the limits of validity of the different schemes to avoid instabilities in the algorithm.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.