Abstract

Solid particle erosion in a steam turbine main stop valve bypass valve has been investigated by means of computational fluid dynamics. Previews attempts to couple fluid mechanics and erosion modeling and improvements in the hydrodynamics models together with improvements in the erosion models are reviewed. The solid particle bearing steam flow through the valve was investigated using a 3D numerical model and the finite volume code Fluent V6.0.12, looking for a reduction of the erosion process. The flow simulation was carried out for the valve original and modified designs with changes of the angle of particle impact on the valve surface. Numerical predictions have been carried out using the Renormalization Group (RNG) k– ε turbulence model. To account for the influence of turbulent fluid fluctuations on particle motion, the stochastic tracking Discrete Random Walk model is used, which includes the effect of instantaneous turbulent velocity fluctuations on the particle trajectories. The removal of wall material due to erosion is calculated using the Finnie model developed for ductile materials. The numerical predictions showed a 51% reduction of the erosion rate for the valve modified design due to changes of the particles trajectories and impingement angle (angle of particle impact). The results obtained show that numerical simulation can be used in a predictive manner to solve a real practical design problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.