Abstract

Statement of problemSelecting material for a minimally invasive occlusal veneer reconstruction concept requires an understanding of how stresses are distributed during functional and parafunctional forces. PurposeThe purpose of this in vitro study was to investigate stress distribution in a maxillary molar restored with ultrathin occlusal veneers and subjected by an antagonistic mandibular molar to clenching and working and nonworking movements. Material and MethodsA maxillary first molar was modeled from microcomputed tomography (micro-CT) data, using medical image processing software, stereolithography editing/optimizing software, and finite element software. Simulated ultrathin occlusal veneer materials were used. The mandibular molar antagonist was a solid nondeformable geometric entity. Loads simulated clenching, working, and nonworking movements with loading of 500 N. The values of the maximum principal stress were recorded. ResultsIn the clenching load situation, maximum tensile stresses were located at the occlusal veneer (52 MPa for composite resin versus 47 MPa for ceramic). In the working movement, significant additional tensile stresses were found on the palatal root (87 MPa for composite resin and 85 MPa for ceramic). In the nonworking movement, tensile stress on the ultrathin occlusal veneer increased to 118 MPa for composite resin and 143 MPa for ceramic veneers. Tensile stress peaks shifted to the mesiobuccal root (75 MPa for composite resin and 74 MPa for ceramic). ConclusionsThe topography of stresses generated by the various occlusal interferences were clearly identified. Significant tensile stress concentrations were found within the restoration’s occlusal topography and root, with the nonworking interference being the most harmful and also the most revealing of the difference between the composite resin and ceramic ultrathin occlusal veneers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call