Abstract

We construct a particle-number (n)-resolved master equation (ME) approach under the self-consistent Born approximation (SCBA) for quantum transport through mesoscopic systems. The formulation is essentially non-Markovian and incorporates the interplay of the multi-tunneling processes and many-body correlations. The proposed n-SCBA-ME goes beyond the scope of the Born-Markov master equation, being applicable to transport under small bias voltage, in non-Markovian regime and with strong Coulomb correlations. For steady state, it can recover not only the exact result of noninteracting transport under arbitrary voltages, but also the challenging nonequilibrium Kondo effect. Moreover, the n-SCBA-ME approach is efficient for the study of shot noise. We demonstrate the application by a couple of representative examples, including particularly the nonequilibrium Kondo system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.