Abstract

Fast algorithms based on the Mersenne and Fermat number-theoretic transforms are used to perform the bilinear transformation of a continuous transfer function to a discrete equivalent. The computations are carried out in finite precision arithmetic, require no multiplications, and can be implemented in parallel using very simple processors. Although the bilinear transform is presently emphasized, similar algorithms are easily derived for any transformation from the s-plane to the z-plane involving the ratio of two polynomials with integer coefficients.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">&gt;</ETX>

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.