Abstract

We calculate the number statistics of a single-mode molecular field excited by photo-association or via a Feshbach resonance from an atomic Bose-Einstein condensate (BEC), a normal atomic Fermi gas, and a Fermi system with pair correlations (BCS state). We find that the molecule formation from a BEC leads for short times to a coherent molecular state in the quantum optical sense. Atoms in a normal Fermi gas, on the other hand, result for short times in a molecular field analog of a classical chaotic light source. The BCS situation is intermediate between the two and goes from producing an incoherent to a coherent molecular field with an increasing gap parameter. This distinct signature of the initial atomic state in the resulting molecular field makes single molecule counting into a powerful diagnostic tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.