Abstract
Automatic number plate recognition method is required due to increasing traffic management. In this paper, we first briefly review some knowledge of Support Vector Machines (SVMs). Then a number plate recognition algorithm is proposed. This algorithm employs an SVM to recognize numbers. The algorithm starts from a collection of samples of numbers from number plates. Each character is recognized by an SVM, which is trained by some known samples in advance. In order to recognize a number plate correctly, all numbers are tested one by one using the trained model. The recognition results are achieved by finding the maximum value between the outputs of SVMs. In this paper, experimental results based on SVMs are given. From the experimental results, we can make the conclusion that SVM is bettr than others such as inductive learning-based number recognition
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.