Abstract
Hypergraph Dualization (also called as hitting set enumeration) is the problem of enumerating all minimal transversals of a hypergraph \({\mathcal {H}}\), i.e., all minimal inclusion-wise hyperedges (i.e., sets of vertices) that intersect every hyperedge in \({\mathcal {H}}\). Dualization is at the core of many important Artificial Intelligence (AI) problems. As a contribution to a better understanding of Dualization complexity, this paper introduces a tight upper bound to the number of minimal transversals that can be computed in polynomial time. In addition, the paper presents an interesting exploitation of the upper bound to the number of minimal transversals. In particular, the problem dealt with is characterizing the complexity of the data mining problem called \(\mathtt {IFM}_{\mathtt {I}}\) (Inverse Frequent itemset Mining with Infrequency constraints), that is the problem of finding a transaction database whose frequent and infrequent itemsets satisfy a number of frequency/infrequency patterns given in input.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.