Abstract
This paper deals with the bifurcation of critical periods from a rigidly quartic isochronous center. It shows that under any small homogeneous perturbation of degree four, up to any order in [Formula: see text], there are at most two critical periods bifurcating from the periodic orbits of the unperturbed system, and the upper bound is sharp. In addition, we further prove that under any small polynomial perturbation of degree [Formula: see text], up to the first order in [Formula: see text], there are at most [Formula: see text] critical periods bifurcating from the periodic orbits of the unperturbed quartic system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.