Abstract

Combined Heat and Power (CHP) systems have many economical and environmental benefits. Generally, selection of these systems is performed using the time-dependent curves of the required electricity and heating load during a year. In the selection of a CHP system, the operation of this system at off-design point also should be studied. In this paper, a method for selecting the number of prime movers, and determining their nominal power and operational strategy considering specific electrical and heating loads is presented. Three types of prime movers which are studied in this paper are gas turbine, diesel engine, and gas engine. Selecting the number of each type of prime mover and determining their nominal power as well as the operational strategy are presented here. Ambient conditions and electricity and heating load curves are assumed as known parameters. Parameters such as engine thermal efficiency, exhaust gas temperature, mass flow rate of fuel and exhaust gases are computed for three types of prime movers. After determining the optimum value of number and nominal power of prime mover(s), the operational strategy of each type of prime mover in CHP system is analyzed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.