Abstract

Optimizing for Non-Uniform Memory Access (NUMA) systems could be considered inappropriate because hardware architecture aware optimizations are not portable. On the contrary, this paper supports the idea that developing NUMA aware optimizations improves performance and energy consumption on NUMA systems and that these optimizations may be considered portable when they are non static. This paper introduces NUMA Balanced Thread and Data Mapping (BTDM), an extension of PThreads4w API [1]. NUMA-BTDM employs balanced data locality concept, improving thread and data mapping for NUMA systems. The purpose is to combine task parallelism with balanced data locality in order to obtain both better performance and reduced energy consumption on NUMA systems at run-time. The implementation of NUMA-BTDM targets homogeneous architectures based on the energy model with constant energy consumption or on the energy model in which each core is powered from a separate source (architectures on which parallel execution may reduce energy consumption compared to serial execution).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.