Abstract

The concept of null Lagrangian is exploited in the context of linear elasticity. In particular, it is shown that the stored energy functional can always be split into a null Lagrangian and a remainder; the null Lagrangian vanishes if and only if the elasticity tensor obeys the Cauchy relations, and is therefore determined by only 15 independent moduli (the so-called “rari-constant” theory of elasticity).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.