Abstract
Clarke and Monzo defined in [3] a construction called a generalized inflation of a semigroup. It is always the case that any inflation of a semigroup is a generalized inflation, and any generalized inflation of a semigroup is a null extension of the semigroup. Clarke and Monzo proved that any associative null extension of a base semigroup which is a union of groups is in fact a generalized inflation. In this paper we study null extensions and generalized inflations of Brandt semigroups. We first prove that any generalized inflation of a Brandt semigroup is actually an inflation of the semigroup. This answers a question posed by Clarke and Monzo in [3]. Then we characterize associative null extensions of Brandt semigroups, and show that there are associative null extensions of Brandt semigroups which are not generalized inflations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.