Abstract

We consider the infinite dimensional linear control system described by the population dynamics model of Lotka-McKendrick with spatial diffusion. Considering control functions localized with respect to the spatial variable but active for all ages, we prove that the whole population can be steered to zero in any positive time. The main novelty we bring is that, unlike the existing results in the literature, we can also control the population of ages very close to 0. Another novelty brought in is the employed methodology: as far as we know, the present work is the first one remarking that the null controllability of the considered system can be obtained by using the Lebeau-Robbiano strategy, originally developed for the null-controllability of the heat equation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.