Abstract

Sea-level rise is beginning to cause increased inundation of many low-lying coastal areas. While most of Earth’s coastal areas are at risk, areas that will be affected first are characterized by several additional factors. These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. For catastrophic coastal flooding, when wind-driven storm surge inundates large areas, the relative contribution of sea-level rise to the frequency of these events is difficult to evaluate. For small scale “nuisance flooding,” often associated with high tides, recent increases in frequency are more clearly linked to sea-level rise and global warming. While both types of flooding are likely to increase in the future, only nuisance flooding is an early indicator of areas that will eventually experience increased catastrophic flooding and land loss. Here we assess the frequency and location of nuisance flooding along the eastern seaboard of North America. We show that vertical land motion induced by recent anthropogenic activity and glacial isostatic adjustment are contributing factors for increased nuisance flooding. Our results have implications for flood susceptibility, forecasting and mitigation, including management of groundwater extraction from coastal aquifers.

Highlights

  • We investigate the frequency and location of nuisance flooding along the eastern seaboard of North America, and compare these to various processes affecting relative sea level on different time scales

  • These data can be compared to longer term geological data based on radiocarbon dating of basal peat deposits, which define rates of RSLR averaged over the late Holocene period[15]

  • There is a likely connection between subsidence and nuisance flooding

Read more

Summary

OPEN Nuisance Flooding and Relative

While most of Earth’s coastal areas are at risk, areas that will be affected first are characterized by several additional factors These include regional oceanographic and meteorological effects and/or land subsidence that cause relative sea level to rise faster than the global average. We use rates of vertical land motion measured by Global Positioning System (GPS), rates of recent (1990 - present) RSLR from tide gauges, groundwater-level change from monitoring wells, water storage from the GRACE satellite gravity mission, the geologic rate of RSLR, and Glacial Isostatic Adjustment (GIA) models. We use these diverse data to assess the various factors that influence nuisance-flooding events. Since tide gauges measure the combined effect of water-level change and vertical land motion, an accurate description and understanding of relevant land motions is important if we hope to use tide-gauge data to describe and understand recent inter-annual to decadal-scale oceanographic changes[13]

Data Sets and Observations
Discussion and Conclusions
Methods
Findings
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.