Abstract

This article proposes a multi-label classification model using an artificial neural network (ANN) to identify both an individual and a mixture of radionuclides in gamma spectra obtained from a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$250\times 250\times 50$ </tex-math></inline-formula> -mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">3</sup> EJ-200 plastic scintillation detector. This model is evaluated under the scenario applied to pedestrian radiation portal monitors (RPMs) to judge how well it works in practice. The simulated and measured gamma of <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">241</sup> Am, <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">133</sup> Ba, <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">137</sup> Cs, <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">60</sup> Co, <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">152</sup> Eu, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{131}\text{I}$ </tex-math></inline-formula> radioactive sources and background are used to generate the training dataset. Measurement data with varying source-to-detector distances, shielding thicknesses, and incidence angles are also taken into account. The experimental results show that the mean value of the accuracy can be achieved at about 98.8% and 94.9% for single- and multi-isotope identification, respectively. In addition, the model can well precisely recognize radionuclides in the gamma spectrum whose gain shift is up to 10%. The dependence of the true positive (TP) rate on the count quality factors of individual radionuclides, which was defined as the ratio between the net count rate and its associated uncertainty, is examined. The detection sensitivities, defined as the minimum count quality factor to obtain a TP rate of 95%, for <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">241</sup> Am, <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">133</sup> Ba, <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">137</sup> Cs, <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">60</sup> Co, <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">152</sup> Eu, and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$^{131}\text{I}$ </tex-math></inline-formula> are 8.90, 11.86, 8.96, 8.21, 12.54, and 11.89, respectively. With such encouraging results, the proposed model should be a useful technique for radionuclide recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.