Abstract

Multinucleated skeletal muscle fibers synthesize cell surface and secreted oligomeric forms of acetylcholinesterase (AChE) that accumulate at specialized locations on the cell surface, such as sites of nerve-muscle contact. Using allelic variants of the AChE polypeptide chains as genetic markers, we show that nuclei homozygous for either the alpha or beta alleles residing in chimeric myotubes preferentially translate their AChE mRNAs on their respective ERs. These results indicate that the events of transcription, translation, and assembly of this membrane protein are compartmentalized into nuclear domains in multinucleated cells, and provide the structural basis for the possible localized expression and regulation of synaptic components at the neuromuscular junctions of vertebrate skeletal muscle fibers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.