Abstract

Progress in mesenchymal stem cell (MSC) based therapies for nucleus pulposus (NP) regeneration are hampered by a lack of understanding and consensus of the normal NP cell phenotype. Despite the recent consensus paper on NP markers, there is still a need to further validate proposed markers. This study aimed to determine whether an NP phenotypic profile could be identified within a large population of mature NP samples.qRT-PCR was conducted to assess mRNA expression of 13 genes within human non-degenerate articular chondrocytes (AC) (n=10) and NP cells extracted from patients across a spectrum of histological degeneration grades (n=71). qRT-PCR results were used to select NP marker candidates for protein expression analysis.Differential expression at mRNA between AC and non-degenerate NP cells was only observed for Paired Box Protein 1 (PAX1) and Forkhead box F1 (FOXF1). In contrast no other previously suggested markers displayed differential expression between non-degenerate NP and AC at mRNA level. PAX1 and FOXF1 protein expression was significantly higher in the NP compared to annulus fibrosus (AF), cartilaginous endplate (CEP) and AC. In contrast Laminin-5 (LAM-332), Keratin-19 (KRT-19) and Hypoxia Inducible Factor 1 alpha (HIF1α) showed no differential expression in NP cells compared with AC cells.A marker which exclusively differentiates NP cells from AF and AC cells remains to be identified, raising the question: is the NP a heterogeneous population of cells? Or does the natural biological variation during IVD development, degeneration state and even the life cycle of cells make finding one definitive marker impossible?

Highlights

  • Low back pain (LBP) is one of the most prevalent health problems in the western world [1, 2], with degeneration of the intervertebral disc (IVD) implicated in 40% of cases [3, 4]

  • Risbud et al, (2015) recently reported nucleus pulposus (NP) phenotypic markers recommended for use in directing mesenchymal stem cell (MSC) based regeneration strategies for the NP [9]; this paper focused on defining the young healthy NP cell phenotype, as they hypothesised this cell type would be most successful in terms of NP regeneration as a treatment strategy for LBP [9]

  • No significant difference in the levels of mRNA expression were observed between articular chondrocytes (AC) compared with non-degenerate NP cells with the exception of Paired Box 1 (PAX1) and forkhead box f1 (FOXF1) (Figures 1 & 2)

Read more

Summary

Introduction

Low back pain (LBP) is one of the most prevalent health problems in the western world [1, 2], with degeneration of the intervertebral disc (IVD) implicated in 40% of cases [3, 4]. Risbud et al, (2015) recently reported NP phenotypic markers recommended for use in directing MSC based regeneration strategies for the NP [9]; this paper focused on defining the young healthy NP cell phenotype, as they hypothesised this cell type would be most successful in terms of NP regeneration as a treatment strategy for LBP [9] Despite this consensus paper, there is still a need to further validate, at gene and protein level, proposed NP markers www.impactjournals.com/oncotarget which have been identified from transcription expression profiles or assessed at protein level but only in a small number of human samples; such molecules include: paired box protein 1 (PAX1), forkhead box f1 (FOXF1) [10, 15] and ovostatin-2 (OVO-2) [10] as well as the proposed NP negative marker Integrin binding sialoprotein (IBSP) [10], shown to be differentially expressed between NP and AC cells. Laminin-332 (laminin-5) and laminin-511 (laminin 10) which have been previously shown to be expressed highly in rat and porcine NP tissue in comparison to annulus fibrosus (AF) tissue, to date this has not been investigated in human IVD tissue [16, 17]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.