Abstract
We present a nucleus-dependent valence-space approach for calculating ground and excited states of nuclei, which generalizes the shell-model in-medium similarity renormalization group to an ensemble reference with fractionally filled orbitals. Because the ensemble is used only as a reference, and not to represent physical states, no symmetry restoration is required. This allows us to capture three-nucleon (3N) forces among valence nucleons with a valence-space Hamiltonian specifically targeted to each nucleus of interest. Predicted ground-state energies from carbon through nickel agree with results of other large-space abinitio methods, generally to the 1% level. In addition, we show that this new approach is required in order to obtain convergence for nuclei in the upper p and sd shells. Finally, we address the 1^{+}/3^{+} inversion problem in ^{22}Na and ^{46}V. This approach extends the reach of abinitio nuclear structure calculations to essentially all light- and medium-mass nuclei.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.