Abstract

Linking stimuli with delayed reinforcement requires neural circuits that can bridge extended temporal gaps. Auditory cortex (ACx) circuits reorganize to support auditory fear learning, but only when afferent sensory inputs temporally overlap with cholinergic reinforcement signals. Here we show that mouse ACx neurons rapidly reorganize to support learning, even when sensory and reinforcement cues are separated by a long gap. We found that cholinergic basal forebrain neurons bypass the temporal delay through multiplexed, short-latency encoding of sensory and reinforcement cues. At the initiation of learning, cholinergic neurons in Nucleus Basalis increase responses to conditioned sound frequencies and increase functional connectivity with ACx. By rapidly scaling up responses to sounds that predict reinforcement, cholinergic inputs jump the gap to align with bottom-up sensory traces and support associative cortical plasticity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call