Abstract

High-frequency stimulation of the nucleus accumbens, also known as deep brain stimulation (DBS), is currently used to alleviate obsessive compulsive symptoms when pharmacotherapy is ineffective. However, the mechanism by which DBS achieves its therapeutic actions is not understood. Imaging studies and the actions of dopaminergic drugs in untreated patients suggest that the dopamine (DA) system likely plays a role in the pathophysiology of obsessive compulsive disorder. Therefore, we examined whether DBS would impact the DA system as a potential component of its therapeutic actions. The activity of DA neurons in the substantia nigra pars compacta (SNc) and ventral tegmental area (VTA) were recorded in anesthetized rats under high-frequency stimulation. DA neuron activity was measured in terms of number of neurons firing, average firing rate and firing pattern. DBS of the nucleus accumbens core did not significantly affect VTA activity or discharge pattern. On the other hand, DBS caused a potent decrease in the number of SNc DA neurons firing spontaneously. Such an effect could contribute to the disruption of pathological habit formation in the SNc-dorsal striatal projection system that may have therapeutic implications for the treatment of obsessive compulsive disorder.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.