Abstract

Theoretical models and empirical work indicate a critical role of the NAcc in salience processing. For instance, the NAcc not only responds to appetitive and aversive information, but it also signals novelty, contextual deviance, and action monitoring. However, because most studies have investigated only one specific type of salience independently, it remains unclear how the NAcc concurrently differentiates between different forms of salience. To investigate this issue, we used intracranial electroencephalography in human epilepsy patients together with a previously established visual oddball paradigm. Here, three different oddball categories (novel, neutral, and target images) were infrequently presented among a standard scene image, and subjects responded to the target via button press. This task allowed us to differentiate "item novelty" (new vs neutral oddballs) from "contextual deviance" (neutral oddballs vs standard images) and "targetness" (target vs neutral oddballs). Time-frequency analysis revealed a dissociation between item novelty and contextual deviance on the basis of decreases in either θ (4-8 Hz) or β power (20-30 Hz). Targetness, on the other hand, was signaled by positive deflections in the stimulus-locked local field potentials, which, importantly, correlated with subjects' reaction times. These findings indicate that, in an ongoing stream of information, the NAcc differentiates between types of salience by distinct neural mechanisms to guide goal-directed behavior.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.