Abstract

The 5 α-D-arabinofuranosylnucleosides α-araU (15), α-araT (18), α-araC (22), α-araA (25), and α-araG (28) have been synthesized by the modified silyl-method. The amino groups at the nucleobases and the 2′-hydroxy group at the sugar moiety were protected by the 2-(4-nitro-phenyl) ethoxycarbonyl (npeoc) group (37-40) and the amide function in α-araG was additionally blocked by the 2-(4-nitrophenyl)ethyl group (63) to improve solubility in organic solvents. Mono-and dimethoxytritylation of the 5′-OH group was performed in the usual manner to give 41-48, 64, and 65 in high yields and further substitution of the 3′-OH group led to the monomeric building blocks 66-75 as well as the 3′-O-succinoyl derivatives 76-85 functioning as starting units in solid-support oligonucleotide synthesis. A large number of oligo-α-arabinonucleotides have been prepared on modified CPG-material applying the npeoc/npe strategy as a very efficient synthetic tool for highly purified, homogenous oligomers. Hybridizations between α-arabinonucleotide strands revealed in analogy to earlier findings an antiparallel orientation whereas the combination of an oligo-α-D-arabinonucleotide with a complementary oligo-2′-deoxy-β-D-ribofuranosylnucleotide showed base-pairing only if a parallel polarity was present. The advantages in oligo-α-arabinonucleotide synthesis were furthermore demonstrated by the synthesis of the tα-ANA his a structural analog of the natural tRNA his of the phage T5.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call