Abstract

Complexes consisting of motor domains of the kinesin-like protein ncd bound to reassembled brain microtubules were visualised using cryoelectron microscopy and helical image reconstruction. Different nucleotide-associated states of a dimeric construct (NΔ295-700) of ncd were analysed to reveal ADP-containing, AMP.PNP-containing and empty (rigor) conformations. In these three states, each thought to mimic a different stage in ATP turnover, the double-headed motors attach to the microtubules by one head only, with the free head tethered in relatively fixed positions. The three structures differ both in the way the attached heads interact with tubulin and in the position of the tethered heads. In the strongly binding rigor and AMP.PNP (ATP-like) states, the attached head makes close contact with both subunits of a tubulin heterodimer. In the weakly bound ADP state, the contact made by the attached head with the monomer closer to the plus end appears to be more loose. Also, in the ATP-like state, the free head tilts nearer to the plus end than in the other two states. The data argue against model mechanisms in which a conformational change in the bound head guides the free head closer to its next binding site; on the contrary, the transition from ADP-filled via rigor to the AMP.PNP (ATP-like) state of the bound head produces a small motion of the free head in the counter-productive direction. However, the observation that the tethered head points towards the minus end, in all three states, is consistent with the idea that the relative arrangement of the heads in a dimer is a major determinant of directionality.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.